Frigate
Frigate is an open source NVR built around real-time AI object detection. All processing is performed locally on your own hardware, and your camera feeds never leave your home
Images


Config
https://github.com/christiantusset/boilerplates/blob/main/docker-compose/frigate/config/config.yml
mqtt:
enabled: false
cameras:
FrontCam:
ffmpeg:
inputs:
- path: rtsp://user:pass@IP_HERE:554/h264Preview_01_main
roles:
- detect
- record
detect:
width: 1280
height: 720
fps: 5
detectors:
ov:
type: openvino
device: GPU
model:
path: /openvino-model/ssdlite_mobilenet_v2.xml
model:
width: 300
height: 300
input_tensor: nhwc
input_pixel_format: bgr
labelmap_path: /openvino-model/coco_91cl_bkgr.txt
#Global Object Settings
rtmp:
enabled: false
birdseye:
enabled: True
mode: continuous
objects:
track:
- person
filters:
person:
threshold: 0.75
min_area: 5000
max_area: 100000
snapshots:
enabled: True
retain:
default: 1
record:
enabled: True
expire_interval: 10
retain:
days: 3
mode: motion
events:
retain:
default: 5
ffmpeg:
hwaccel_args: preset-vaapi
Docker
https://github.com/christiantusset/boilerplates/blob/main/docker-compose/frigate/docker-compose.yml
---
version: "3.9"
services:
frigate:
container_name: frigate
image: ghcr.io/blakeblackshear/frigate:stable
privileged: true # this may not be necessary for all setups
restart: unless-stopped
shm_size: "64mb" # update for your cameras based on calculation above
volumes:
- /etc/localtime:/etc/localtime:ro
- ./config/config.yml:/config/config.yml
- ./media:/media/frigate
- type: tmpfs # Optional: 1GB of memory, reduces SSD/SD Card wear
target: /tmp/cache
tmpfs:
size: 1000000000
ports:
- "5000:5000"
- "8554:8554" # RTSP feeds
- "8555:8555/tcp" # WebRTC over tcp
- "8555:8555/udp" # WebRTC over udp
environment:
- FRIGATE_RTSP_PASSWORD:"adminadmin"
- LIBVA_DRIVER_NAME=radeonsi #amd
# - LIBVA_DRIVER_NAME=i965 #intel
# devices:
# - /dev/bus/usb:/dev/bus/usb # passes the USB Coral, needs to be modified for other versions
# - /dev/apex_0:/dev/apex_0 # passes a PCIe Coral, follow driver instructions here https://coral.ai/docs/m2/get-started/#2a-on-linux
# - /dev/dri/renderD128 # for intel hwaccel, needs to be updated for your hardware
# deploy: # <------------- Add this section
# resources:
# reservations:
# devices:
# - driver: nvidia
# device_ids: [ '0' ] # this is only needed when using multiple GPUs
# count: 1 # number of GPUs
# capabilities: [ gpu ]
#Guide: https://www.smarthomebeginner.com/frigate-docker-guide/
#Doc: https://docs.frigate.video/frigate/installation/
Last updated